A. WUJUD ZAT
Konsep: Zat adalah sesuatu yang menempati ruang dan memiliki massa.
Apakah benda-benda memerlukan tempat? Misal tersedia air yang berada di dalam gelas. Tuanglah air tersebut ke dalam kaleng. Apakah air menempati kaleng? Ternyata air memerlukan tempat atau wadah. Selanjutnya jika air dalam wadah itu ditimbang ternyata memiliki massa. Demikian halnya dengan udara ternyata juga menempati ruang dan memiliki massa.
Di sekitarmu terdapat benda-benda yang dapat kamu kelompokkan kedalam tiga wujud zat. Beberapa benda seperti besi, kayu, aluminium termasuk zat padat. Air, minyak termasuk zat cair, sedangkan gas elpiji, udara termasuk zat gas. Pada prinsipnya terdapat tiga wujud zat yaitu : zat padat, zat cair dan zat gas.
1. Perubahan Wujud Zat
Selepas kamu melakukan kegiatan olah raga tentu akan merasakan haus. Diantara teman kamu mengajak pergi ke kantin sekolah untuk membeli es teh. Tahukah kamu bagaimana cara membuat es? Ketika air dimasukkan ke dalam freezer akan mengalami perubahan wujud yaitu dari cair menjadi padat. Dapatkah kamu menjelaskan perubahan wujud yang terjadi ketika air dipanaskan kemudian mendidih? Perubahan wujud apa pula yang terjadi pada kapur barus yang dimasukkan pada almari pakaian? Coba kamu temukan jawabannya!
Perubahan wujud zat digolongkan menjadi enam peristiwa sebagai berikut.
a. Membeku
Peristiwa perubahan wujud dari cair menjadi padat. Dalam peristiwa ini zat melepaskan energi panas.
b. Mencair
Peristiwa perubahan wujud zat dari padat menjadi cair. Dalam peristiwa ini zat memerlukan energi panas.
c. Menguap
Peristiwa perubahan wujud dari cair menjadi gas. Dalam peristiwa ini zat memerlukan energi panas.
d. Mengembun
Peristiwa perubahan wujud dari gas menjadi cair. Dalam peristiwa ini zat melepaskan energi panas.
e. Menyublim
Peristiwa perubahan wujud dari padat menjadi gas. Dalam peristiwa ini zat memerlukan energi panas.
f. Mengkristal
Peristiwa perubahan wujud dari gas menjadi padat. Dalam peristiwa ini zat melepaskan energi panas.
B. TEORI PARTIKEL ZAT
Konsep: Molekul adalah bagian terkecil suatu zat yang masih memiliki sifat zat itu. Atom adalah partikel yang sangat kecil penyusun suatu benda.
Zat tersusun atas partikel-partikel yang sangat kecil. Partikel-partikel itu yang dinamakan molekul. Mengapa zat mempunyai bentuk tetap? Mengapa zat cair mempunyai bentuk yang berubah-ubah sesuai dengan wadahnya? Bagaimana bentuk zat gas? Untuk lebih jelasnya ikuti penjelasan berikut ini.
1. Partikel Zat dapat Bergerak
Ternyata saat minyak wangi belum disemprotkan kamu tidak akan mencium aroma minyak wangi itu. Tetapi setelah disemprotkan kamu dapat mencium aroma minyak wangi itu. Hal ini membuktikan sekaligus menunjukkan bahwa zat gas memiliki jarak antarpartikel lebih jauh dan bergerak bebas.
2. Susunan dan Gerak Partikel Pada Berbagai Wujud Zat
a. zat padat
Zat padat mempunyai sifat bentuk dan volumenya tetap. Bentuknya tetap dikarenakan partikel-partikel pada zat padat saling berdekatan, tersusun teratur dan mempunyai gaya tarik antar partikel sangat kuat. Volumenya tetap dikarenakan partikel pada zat padat dapat bergerak dan berputar pada kedudukannya saja.
b. zat cair
Zat cair mempunyai sifat bentuk berubah-ubah dan volumenya tetap. Bentuknya berubah-ubah dikarenakan partikel-partikel pada zat cair berdekatan tetapi renggang, tersusun teratur, gaya tarik antar partikel agak lemah. Volumenya tetap dikarenakan partikel pada zat cair mudah berpindah tetapi tidak dapat meninggalkan kelompoknya.
c. zat gas
Zat gas mempunyai sifat bentuk berubah-ubah dan volume berubah-ubah. Bentuknya berubah-ubah dikarenakan partikel-partikel pada zat gas berjauhan, tersusun tidak teratur, gaya tarik antar partikel sangat lemah. Volumenya berubah-ubah dikarenakan partikel pada zat gas dapat bergerak bebas meninggalkan kelompoknya.
3. Menjelaskan Perubahan Wujud Zat Berdasarkan Teori Partikel
Saat zat padat dipanaskan, mengakibatkan partikel-partikel zat padat bergerak lebih cepat dan gaya tarik antarpartikel menjadi lemah. Akibatnya partikel-partikel dapat berpindah tempat menyebabkan wujud zat berubah dari padat menjadi cair. Bila zat cair dipanaskan, mengakibatkan partikel-partikel zat cair bergerak cepat dan gaya tarik antarpartikel menjadi lemah. Akibatnya partikel-partikel dapat berpindah tempat menyebabkan wujud zat berubah dari cair menjadi gas.
C. KOHESI DAN ADHESI
Konsep: Kohesi adalah gaya tarik menarik antar partikel zat sejenis. Adhesi adalah gaya tarik menarik antar partikel yang tidak sejenis. Cembung dan cekungnya permukaan zat cair dalam tabung disebut meniskus.
Teteskan air raksa di atas permukaan kaca, bagaimana bentuk raksa itu? Ternyata setetes air raksa itu berbentuk bola dan tidak membasahi permukaan kaca. Mengapa dapat terjadi? Karena kohesi air raksa lebih besar daripada adhesi air raksa dengan permukaan kaca. Teteskan air di atas permukaan kaca, bagaimana bentuk air itu? Ternyata setetes air itu menyebar dan membasahi permukaan kaca. Mengapa dapat terjadi? Karena kohesi air lebih kecil daripada adhesi air dengan permukaan kaca.
D. Kapilaritas
Gaya kohesi dan gaya adhesi berpengaruh pada gejala kapilaritas. Kapilaritas adalah gejala naik atau turunnya cairan di dalam pipa kapiler atau pipa kecil. Sebuah pipa kapiler kaca bila dicelupkan pada tabung berisi air akan dijumpai air dapat naik ke dalam pembuluh kaca pipa kapiler, sebaliknya bila pembuluh pipa kapiler dicelupkan pada tabung berisi air raksa akan dijumpai bahwa raksa di dalam pembuluh kaca pipa kapiler lebih rendah permukaannya dibandingkan permukaan raksa dalam tabung. Jadi, kapilaritas sangat tergantung pada kohesi dan adhesi. Air naik dalam pembuluh pipa kapiler dikarenakan adhesi sedangkan raksa turun dalam pembuluh pipa kapiler dikarenakan kohesi.
Sekarang banyak dikembangkan teknologi yang mendasarkan pada gaya adhesi maupun kohesi. Beberapa tekstil kain tiruan menghasilkan kain yang kohesif terhadap debu. Jadi, pakaian dari bahan tersebut tidak mudah kotor. Di lain pihak, banyak ditemukan bahan-bahan adhesif serbaguna, lem alteco, dan sejenisnya sangat berguna bagi kehidupan. Bahkan, luka bekas operasi sekarang tidak perlu dijahit melainkan cukup dilem dengan lem khusus yang adhesif dengan jaringan kulit dan otot.
Beberapa contoh gejala kapilaritas yang berkaitan dengan peristiwa alam yaitu:
1. peristiwa naiknya air dari ujung akar ke daun pada tumbuhtumbuhan;
2. naiknya minyak tanah pada sumbu kompor;
3. basahnya tembok rumah bagian dalam ketika hujan. Ketika terkena hujan, tembok bagian luar akan basah, kemudian merembes ke bagian yang lebih dalam.
2. naiknya minyak tanah pada sumbu kompor;
3. basahnya tembok rumah bagian dalam ketika hujan. Ketika terkena hujan, tembok bagian luar akan basah, kemudian merembes ke bagian yang lebih dalam.
D. MASSA JENIS
Untuk menentukan massa jenis suatu zat dapat dilakukan dengan melakukan membagi massa zat dengan volume zat. Jika massa jenis zat (baca rho), massa zat m dan volume zat V maka diperoleh persamaan:
Keterangan:
= massa jenis zat (Kg/m3)
m = massa zat (kg)
V = volume zat (m3)
= massa jenis zat (Kg/m3)
m = massa zat (kg)
V = volume zat (m3)
Perbandingan antara massa zat dengan volume zat disebut massa jenis. Massa jenis menunjukkan kerapatan suatu zat.
Berikut beberapa hal tentang massa jenis suatu zat.
1. Satuan Massa Jenis
Satuan massa jenis dalam SI adalah kg/m3 yang dapat pula dikonversikan ke satuan yang lain misalnya g/cm3.
2. Menentukan Massa Jenis Zat Padat
a. Bentuknya teratur
Langkah yang harus dilakukan adalah mengukur massa zat dengan menggunakan neraca atau timbangan. Volume zat dapat dihitung menggunakan rumus berdasarkan bentuknya misalnya, kubus, balok. Langkah terakhir menentukan massa jenis zat dengan membagi massa zat dengan volume zat.
b. Bentuknya tidak teratur
Misalnya yang hendak kamu ketahui adalah massa jenis batu. Langkah yang harus kamu lakukan sebagai berikut :
1) Timbanglah batu dengan menggunakan neraca untuk mengetahui massa batu. Catat hasil pengukuranmu!
2) Sediakan gelas ukur dan tuangkan air ke dalam gelas ukur tersebut. Catat volumenya, misal V1 = 50 ml.
3) Masukkan batu yang hendak kamu ketahui volumenya ke dalam gelas ukur yang berisi air. Catat kenaikan volume airnya, misalnya V2 = 70 ml.
4) Volume batu = V2 – V1
5) Massa jenis zat merupakan hasil bagi massa zat dengan volume zat.
3. Menentukan Massa Jenis Zat Cair
Massa jenis zat cair dapat diukur langsung dengan menggunakan hidrometer. Hidrometer memiliki skala massa jenis dan pemberat yang dapat mengakibatkan posisi hidrometer vertikal. Cara mengetahui massa jenis zat cair adalah dengan memasukkan hidrometer ke dalam zat cair tersebut. Hasil pengukuran dapat diperoleh dengan acuan semakin dalam hidrometer tercelup, menyatakan massa jenis zat cair yang diukur semakin kecil.
4. Massa Jenis Zat Berguna untuk Menentukan Jenis Zat
Pernahkah kamu menjumpai suatu zat yang tidak dapat disebutkan jenisnya? Kamu dapat menentukan jenis suatu zat dengan cara mengukur massa zat dan volumenya, selanjutnya mencari massa jenis zat tersebut dengan cara membagi massa zat dengan volume zat. Hasil yang diperoleh dikonfirmasikan dalam tabel massa jenis berbagai zat.
5. Manfaat Mengetahui Massa Jenis
Mengapa aluminium digunakan untuk bahan pembuatan pesawat terbang? Mengapa polystyrene digunakan sebagai bahan mebeleir? Tahukah kamu alasannya? Aluminium bersifat kuat dan memiliki massa yang kecil sehingga ringan tidak seperti logam-logam lainnya misalnya, besi. Polystyrene memiliki massa yang cukup rendah dan massa jenis rendah. Hal ini mengandung makna polystyrene digunakan sebagai bahan mebeleir yang menempati ruangan luas tetapi massanya cukup rendah.
Penggunaan Konsep Massa Jenis dalam Kehidupan Sehari-Hari
1. Kapal Selam
Tahukah kamu mengapa es dapat terapung di air, sedangkan batu tenggelam dalam air? Es memiliki massa jenis lebih kecil dari air, sehingga es dapat terapung dalam air. Batu tenggelam dalam air karena memiliki massa jenis lebih besar daripada air. Tahukah kamu mengapa kapal selam dapat terapung dan tenggelam di air? Ketika terapung massa jenis total kapal selam lebih kecil dari air laut dan sewaktu tenggelam massa jenis total kapal selam lebih besar dari air laut. Kapal selam memiliki tangki pemberat yang berisi air dan udara. Tangki tersebut terletak di antara lambung kapal sebelah dalam dan luar. Tangki dapat berfungsi membesar atau memperkecil massa jenis total kapal selam. Ketika air laut dipompa masuk ke dalam tangki pemberat, massa jenis kapal selam lebih besar dan sebaliknya agar massa jenis total kapal selam menjadi kecil, air laut dipompa keluar.
2. Balon Gas
Pernahkah kamu melihat balon udara? Tahukah kamu, gas apa yang terdapat di dalamnya? Balon gas berisi gas helium. Gas helium memiliki massa jenis yang lebih kecil dari udara, sehingga balon gas bisa naik ke atas.
3. Air Minum Dingin di Dalam Lemari Es
Suatu ketika kamu mungkin pernah melihat dalam botol air minum dingin yang berasal dari lemari es terdapat endapan kapur. Kenapa hal itu dapat terjadi? Air yang jernih dapat juga mengandung kapur, namun apabila dilihat langsung dengan mata tidak kelihatan. Ketika air dingin massa jenis air lebih kecil dan terpisah dari kapur sehingga kapur yang memiliki massa jenis lebih besar akan turun ke bawah dan mengendap.
1. Suhu
Suhu adalah besaran yang menunjukkan derajat atau tingkat panas atau dingin suatu benda.
Suhu dapat diukur dengan menggunakan termometer.
Beberapa jenis termometer:
- Termometer raksa dan termometer alkohol. Adalah termometer yang berdasarkan pemuaian zat cair. Biasanya digunakan untuk mengukur suhu ruangan dan suhu badan.
- Termometer bimetal. Bimetal adalah dua buah logam yang berbeda koefisien muainya dikeling menjadi satu. Jika alat ini dipanaskan maka bimetal akan melengkung ke arah logam yang koefisien muainya lebih kecil.
- Termometer hambatan. Termometer hambatan bekerja berdasarkan prinsip bahwa jika seutas kawat dipanaskan, hambatan listriknya akan bertambah. Perubahan hambatan listrik diubah menjadi pulsa-pulsa listrik dan pulsa listrik inilah yang menunjukkan suhu pada saat itu.
- Termokopel. Termokopel adalah sensor suhu yang banyak digunakan untuk mengukur suhu tinggi. Prinsip kerjanya adalah mengubah perbedaan suhu menjadi tegangan listrik. Termokopel memanfaatkan perbedaan pemuaian antara dua logam yang ujungnya bersentuhan. Perbedaan pemuaian antara dua logam yang ujungnya bersentuhan akan menghasilkan gaya gerak listrik (GGL). Besar GGL inilah yang dimanfaatkan termokopel untuk menunjukkan suhu.
- Termometer gas. Termometer gas memanfaatkan perubahan volume atau tekanan gas karena suhu.
- Pirometer. Pirometer adalah alat pengukur suhu suatu benda yang memiliki suhu sangat tinggi. PRinsip kerjanya berdasarkan intensitas radiasi yang dipancarkan oleh radiasi benda tersebut.
Jenis-jenis skala termometer:
- Skala celcius
- Skala Kelvin
- Skala Fahrenheit
- Skala Reamur
2. Kalor
Kalor adalah energi panas zat yang dapat berpindah dari suhu tinggi ke suhu rendah.
Satu kalori adalah kalor yang dibutuhkan untuk menaikkan suhu 1 gram air sebesar 1oC.
Kalor jenis adalah banyaknya kalor yang diperlukan oleh suatu benda untuk menaikkan suhu 1 kg zat itu sebesar 1oC.
Rumus kalor jenis:
Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu zat 1oC
Rumus kapasitas kalor:
Keterangan: |
c = kalor jenis (kal/g oC) atau (joule/kg oC) |
C = kapasitas kalor (J/kg) |
Q = banyaknya kalor yang diperlukan (kalori) atau (joule) |
m = massa benda (g) atau (kg) |
= perubahan suhu (oC) |
Kalor latern adalah kalor yang digunakan zat untuk mengubah wujudnya.
- Kalor latern untuk melebur disebut kalor lebur
- Kalor latern untuk menguap disebut kalor uap
Q = mL, untuk kalor lebur
Q = mU, untuk kalor uap
Asas Black berbunyi : “banyaknya kalor yang dilepaskan benda bersuhu tinggi sama dengan banyaknya kalor yang diterima benda yang bersuhu lebih rendah”
A. Pemuaian Zat Padat
Coba kamu amati bingkai kaca jendela di ruang kelasmu! Adakah bingkai jendela yang melengkung? Tahukah kamu apa sebabnya?
Bingkai jendela tersebut melengkung tidak lain karena mengalami
pemuaian. Pemuaian yang terjadi pada benda, sebenarnya terjadi pada seluruh bagian benda tersebut. Namun demikian, untuk mempermudah pemahaman maka pemuaian dibedakan tiga macam, yaitu pemuaian panjang, pemuaian luas, dan pemuaian volume.
1. Pemuaian Panjang
Pernahkah kamu mengamati kabel jaringan listrik pada pagi hari dan siang hari? Kabel jaringan akan tampak kencang pada pagi hari dan tampak kendor pada siang hari. Kabel tersebut mengalami pemuaian panjang akibat terkena panas sinar matahari. Alat yang digunakan untuk menyelidiki pemuaian panjang berbagai jenis zat padat adalah musschenbroek. Pemuaian panjang suatu benda dipengaruhi oleh panjang mula-mula benda, besar kenaikan suhu, dan tergantung dari jenis benda.
2. Pemuaian Luas
Jika yang dipanaskan adalah suatu lempeng atau plat tipis maka plat tersebut akan mengalami pemuaian pada panjang dan lebarnya. Dengan demikian lempeng akan mengalami pemuaian luas atau pemuaian bidang. Perhatikan Gambar 5.4.
Pertambahan luas zat padat untuk setiap kenaikan 1ºC pada zat seluas 1 m2 disebut koefisien muai luas (β). Hubungan antara luas benda, pertambahan luas suhu, dan koefisien muai luas suatu zat adalah
Pemuaian luas dapat kita amati pada jendela kaca rumah. Pada saat udara dingin kaca menyusut karena koefisien muai kaca lebih besar daripada koefisien muai kayu. Jika suhu memanas maka kaca akan memuai lebih besar daripada kayu kusen sehingga kaca akan terlihat terpasang dengan sangat rapat pada kusen kayu.
3. Pemuaian Volume
Jika suatu balok mula-mula memiliki panjang P0, lebar L0, dan tinggi h0 dipanaskan hingga suhunya bertambah Δt, maka berdasarkan pada pemikiran muai panjang dan luas diperoleh harga volume balok
tersebut sebesar
Keterangan:
V = Volume akhir (m3)
V0 = Volume mula-mula (m3)
ΔV = Pertambahan volume (m3)
Γ = Koefisien muai volume (/oC)
t = Kenaikan suhu (ºC)
B. Pemuaian Zat Cair
Pada zat cair tidak melibatkan muai panjang ataupun muai luas, tetapi hanya dikenal muai ruang atau muai volume saja. Semakin tinggi suhu yang diberikan pada zat cair itu maka semakin besar muai volumenya. Pemuaian zat cair untuk masing-masing jenis zat cair berbeda-beda, akibatnya walaupun mula-mula volume zat cair sama tetapi setelah dipanaskan volumenya menjadi berbeda-beda. Pemuaian volume zat cair terkait dengan pemuaian tekanan karena peningkatan suhu. Titik pertemuan antara wujud cair, padat dan gas disebut titik tripel.
Anomali Air
Khusus untuk air, pada kenaikan suhu dari 0º C sampai 4º C volumenya tidak bertambah, akan tetapi justru menyusut. Pengecualian ini disebut dengan anomali air. Oleh karena itu, pada suhu 4ºC air mempunyai volume terendah. Hubungan volume dengan suhu pada air dapat digambarkan
pada grafik berikut.
Pada suhu 4��C, air menempati posisi terkecil sehingga pada suhu itu air memiliki massa jenis terbesar. Jadi air bila suhunya dinaikkan dari 0��C – 4��C akan menyusut, dan bila suhunya dinaikkan dari 4��C ke atas akan memuai. Hubungan antara suhu dan volume air dapat digambarkan pada Gambar 5.6. Biasanya pada setiap benda bila suhunya bertambah pasti mengalami pemuaian. Peristiwa yang terjadi pada air itu disebut anomali air. Hal yang sama juga terjadi pada bismuth dengan suhu yang berbeda.Lakukan kegiatan berikut untuk menyelidiki kecepatan pemuaian pada berbagai macam zat cair.
C. Pemuaian pada Gas
Mungkin kamu pernah menyaksikan mobil atau motor yang sedang melaju di jalan tiba-tiba bannya meletus?. Ban mobil tersebut meletus karena terjadi pemuaian udara atau gas di dalam ban. Pemuaian tersebut terjadi karena adanya kenaikan suhu udara di ban mobil akibat gesekan roda dengan aspal.
VIDEO Pemuaian
Pemuaian pada gas adalah pemuaian volume yang dirumuskan sebagai
γ adalah koefisien muai volume. Nilai γ sama untuk semua gas, yaitu 1/273 oC-1Pemuaian gas dibedakan tiga macam, yaitu
a. pemuaian gas pada suhu tetap (isotermal),
b. pemuaian gas pada tekanan tetap, dan
c. pemuaian gas pada volume tetap.
1. Pemuaian Gas pada Suhu Tetap (Isotermal)
Pernahkah kalian memompa ban dengan pompa manual seperti Gambar 5.8?
Apa yang kalian rasakan ketika baru pertama kali menekan pompa tersebut? Apa yang kalian rasakan ketika kalian menekannya lebih jauh? Awalnya mungkin terasa ringan. Namun, lama kelamaan menjadi berat. Hal ini karena ketika kita menekan pompa, itu berarti volume gas tersebut mengecil. Pemuaian gas pada suhu tetap berlaku hukum Boyle, yaitu gas di dalam ruang tertutup yang suhunya dijaga tetap, maka hasil kali tekanan dan volume gas adalah tetap. Dirumuskan sebagai
Keterangan,
P = tekanan gas (atm)
V = volume gas (L)
2. Pemuaian Gas pada Tekanan Tetap
(Isobar)(Pengayaan)
Pemuaian gas pada tekanan tetap berlaku hukum Gay Lussac, yaitu gas di dalam ruang tertutup dengan tekanan dijaga tetap, maka volume gas sebanding dengan suhu mutlak gas. Dalam bentuk persamaan dapat dituliskan sebagai
3. Pemuaian Gas Pada Volume Tetap (Isokhorik)
(Pengayaan)
Pemuaian gas pada volume tetap berlaku hukum Boyle-Gay Lussac, yaitu jika volume gas di dalam ruang tertutup dijaga tetap, maka tekanan gas sebanding dengan suhu mutlaknya. Hukum Boyle-Gay Lussac dirumuskan sebagai
Keterangan:
P = tekanan (atm)
V = volume (L)
T = suhu (K)
D. Penerapan Prinsip Pemuaian Zat dalam
Kehidupan Sehari-Hari
Prinsip pemuaian zat banyak diterapkan dalam kehidupan sehari-hari. Berikut ini adalah beberapa contoh penerapannya.
Pemasangan Kaca Jendela
Pemasangan kaca jendela memperhatikan juga ruang muai bagi kaca sebab koefisien muai kaca lebih besar daripada koefisien muai kayu tempat kaca tersebut dipasang. Hal ini penting sekali untuk menghindari terjadinya pembengkokan pada bingkai.
2. Pemasangan Sambungan Rel Kereta Api
Penyambungan rel kereta api harus menyediakan celah antara satu batang rel dengan batang rel lain. Jika suhu meningkat, maka batang rel akan memuai hingga akan bertambah panjang. Dengan diberikannya ruang muai antar rel maka tidak akan terjadi desakan antar rel yang akan mengakibatkan rel menjadi bengkok.
Pemasangan Bingkai Besi pada Roda Pedati
Bingkai roda pedati pada keadaan normal dibuat sedikit lebih kecil daripada tempatnya sehingga tidak dimungkinkan untuk dipasang secara langsung pada tempatnya. Untuk memasang bingkai tersebut, terlebih dahulu besi harus dipanaskan hingga memuai dan ukurannya pun akan menjadi lebih besar daripada tempatnya sehingga memudahkan untuk dilakukan pemasangan bingkai tersebut. Ketika
suhu mendingin, ukuran bingkai kembali mengecil dan terpasang kuat pada tempatnya.
Pemasangan Jaringan Listrik dan Telepon
Kabel jaringan listrik atau telepon dipasang kendur dari tiang satu ke tiang lainnya sehingga saat udara dingin panjang kabel akan sedikit berkurang dan mengencang. Jika kabel tidak dipasang kendur, maka saat terjadi penyusutan kabel akan terputus.
Keping Bimetal
Keping bimetal adalah dua buah keping logam yang memiliki koefisien muai panjang berbeda yang dikeling menjadi satu. Keping bimetal sangat peka terhadap perubahan suhu. Pada suhu normal panjang keping bimetal akan sama dan kedua keping pada posisi lurus. Jika suhu naik kedua keping akan mengalami pemuaian dengan pertambahan panjang yang berbeda. Akibatnya keping bimetal akan membengkok ke arah logam yang mempunyai koefisien muai panjang yang kecil.
Keping bimetal dapat dimanfaatkan dalam berbagai keperluan misalnya pada termometer bimetal, termostat bimetal pada seterika listrik, saklar alarm bimetal, sekring listrik bimetal. Pemanfaatan pemuaian zat yang tidak sama koefisien muainya dapat berguna bagi industri otomotif, misalnya pada bimetal yang dipasang sebagai saklar otomatis atau pada lampu reting kendaraan.
Tokoh IPA
Pieter (Petrus) van Musschenbroek (1692—1761)
Musschenbroek lahir pada 14 Maret 1692 di Leiden, Belanda, dari keluarga pembuat perkakas rumah tangga. Ketika Petrus (Pieter’s) lahir kedua orangtuanya selalu membuat alat-alat fisika (pompa udara, mikroskop, dan teleskop) dan karena itulah dia menyukai ilmu sains. Dia belajar di Universitas Leiden (Leiden) dan memperoleh gelar dokter pada tahun 1715 dan ia berhasil meraih gelar doctor (Ph.D.) pada bidang sains murni (fisika). Dia berkunjung ke Inggris pada tahun 1717 dan berjumpa dengan Isaac Newton. Sekembalinya ke Belanda, dia mendapat gelar guru besar di bidang sains dan matematika
dari Universitas Duesberg (Duisburg) pada tahun 1719. Musschenbroek mengembangkan ide-ide Newton di Belanda. Dia
diangkat menjadi guru besar (dari tahun 1721) di Universitas Duesberg, Utrecht, dan Leiden (dari tahun 1740—1761). Dia berhasil mengembangkan
ilmunya di bidang sains (fisika) di Universitas Utrecht dan Universitas Leiden. Dia merupakan orang yang pertama kali mengembangkan penelitian sains tentang daya listrik dan alat-alat perlengkapannya. Pada 1729, dia sudah menjadi ahli fisika yang terkemuka dari ahli lainnya.
Rangkuman
Pemuaian adalah bertambahnya ukuran benda akibat kenaikan suhu zat tersebut. Pemuaian dapat terjadi pada zat padat, cair, dan gas. Besarnya pemuaian zat sangat tergantung ukuran benda semula, kenaikan suhu, dan jenis benda. Pengaruh dari pemuaian pada zat, benda akan bertambah ukurannya baik panjang, luas maupun volume. Pemuaian panjang suatu benda dipengaruhi oleh panjang mula-mula benda, besar kenaikan suhu, dan tergantung dari jenis benda. Adapun pemuaian volume zat cair terkait dengan pemuaian tekanan karena peningkatan suhu. Khusus untuk air, pada kenaikan suhu dari 0ºC sampai 4ºC volumenya tidak bertambah akan tetapi justru menyusut. Pengecualian ini disebut dengan anomali air. Hal serupa juga terjadi pada bismuth pada suhu-suhu yang berbeda. Efek pemuaian zat tersebut harus diperhitungkan oleh para ahli dalam konstruksi jembatan, jalan, pemasangan kabel telepon dan listrik. Hal ini dilakukan untuk menghindari bencana yang tidak diinginkan.
- Termometer skala Celcius
Merupakan termometer yang menggunakan skala Celcius (C).Titik didih air: 100 derajat Celcius (100 C)
Titik beku: 0 derajat Celcius (0 C)Dari 0 derajat Celcius sampai 100 derajar Celcius dibagi dalam 100 skala. - Termometer skala Reamur
Merupakan termometer yang menggunakan skala Reamur (R).Titik didih air: 80 derajat Reamur (80 R)
Titik bekunya: 0 derajat Reamur (0 R)Dari 0 derajat Reamur sampai 80 derajar Reamur dibagi dalam 80 skala. - Termometer skala Fahrenheit
Merupakan termometer yang menggunakan skala Fahrenheit (F).Titik didih air: 212 derajat Fahrenheit (212 F)
Titik bekunya: 32 derajat Fahrenheit (32 F)Dari 32 derajat Fahrenheit sampai 212 derajar Fahrenheit dibagi dalam 180 skala. - Termometer skala Kelvin
Merupakan termometer yang menggunakan skala Kelvin (K).Titik didih air: 373 Kelvin (373 K)
Titik bekunya: 273 Kelvin (273 K)Dari 273 Kelvin sampai 373 Kelvin dibagi dalam 100 skala.
Konversi Suhu
Konversi suhu merupakan cara untuk menyatakan suhu suatu benda dari satu skala ke dalam skala lainnya. Jadi, suhu suatu benda dalam Celcius dapat dikonversi (diubah) ke dalam skala lainnya yaitu Reamur, Fahrenheit, dan Kelvin. Untuk mengonversi (mengubah) suhu dari satu skala ke skala lain, dapat menggunakan rumus atau formula tertentu yang sudah ditetapkan.
- Konversi Suhu dari Celcius (C) ke Reamur (R)Rumusnya adalah :R = (4/5) CR = suhu dalam skala Reamur
C = suhu dalam skala CelciusContoh: Suhu suatu benda dalam skala Celcius menunjukkan 100 C. Bila dikonversi ke dalam skala Reamur (R) adalah:R = (4/5) C
R = (4/5) 100 = 80 RJadi, suhu benda yang menunjukkan angka 100 dalam skala Celcius (C) sama dengan 80 dalam skala Reamur (R). - Konversi Suhu dari Celcius (C) ke Fahrenheit (F)Rumusnya adalah:F = (9/5) C + 32F = suhu dalam skala Fahrenheit
C = suhu dalam skala CelciusContoh: Suhu suatu benda dalam skala Celcius menunjukkan 100 C. Bila dikonversi ke dalam skala Fahrenheit (F) adalah:F = (9/5) C + 32
F = (9/5) 100 + 32 = 212 FJadi, suhu benda yang menunjukkan angka 100 dalam skala Celcius (C) sama dengan 212 dalam skala Fahrenheit (F). - Konversi Suhu dari Celcius (C) ke Kelvin (K)Rumusnya adalah:K = C + 273K = suhu dalam Kelvin
C = suhu dalam CelciusContoh: Suhu suatu benda dalam skala Celcius menunjukkan 100 C. Bila dikonversi ke dalam Kelvin (K) adalah:K = C + 273
K = 100 + 273 = 373 KJadi, suhu benda yang menunjukkan angka 100 dalam skala Celcius (C) sama dengan 373 dalam skala Kelvin (K).
Tak hanya dari skala Celcius (C), konversi juga dapat dilakukan dari skala lainnya yaitu Reamur (R), Fahrenheit (F), dan Kelvin (K).
Secara ringkas, rumus untuk mengkonversi suhu dari skala satu ke skala lainnya adalah:
- Konversi suhu dari Celcius (C) ke Reamur (R), Fahrenheit (F), dan Kelvin (K) adalah:R = (4/5) C
F = (9/5) C + 32
K = C + 273 - Konversi suhu dari Reamur (R) ke Celcius (C), Fahrenheit (F), dan Kelvin (K) adalah:C = (5/4) R
F = (9/4) R + 32
K = C + 273 = (5/4) R + 273 - Konversi suhu dari Fahrenheit (F) ke Celcius (C), Reamur (R), dan Kelvin (K) adalah:C = 5/9 (F-32)
R = 4/9 (F-32)
K = 5/9 (F-32) + 273 - Konversi suhu dari Kelvin (K) ke Celcius (C), Reamur (R), Fahrenheit (F) adalah:C = K – 273
R = 4/5 (K-273)
F = 9/5 (K-273) + 32
0 komentar:
Posting Komentar